Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

نویسندگان

  • Runguang Li
  • Qingge Xie
  • Yan-Dong Wang
  • Wenjun Liu
  • Mingguang Wang
  • Guilin Wu
  • Xiaowu Li
  • Minghe Zhang
  • Zhaoping Lu
  • Chang Geng
  • Ting Zhu
چکیده

Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands. Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.

This paper analyzes local lattice rotations introduced in severely deformed polycrystalline titanium by friction stir welding. Nondestructive three-dimensional (3D) spatially resolved polychromatic X-ray microdiffraction, is used to resolve the local crystal structure of the restructured surface from neighboring local structures in the sample material. The measurements reveal strong gradients o...

متن کامل

Synchrotron X-ray Microdiffraction Images of Polarization Switching in Epitaxial PZT Capacitors with Pt and SrRuO3 Top Electrodes

The evolution of stored ferroelectric polarization in PZT thin film capacitors was imaged using synchrotron x-ray microdiffraction with a submicron-diameter focused incident x-ray beam. To form the capacitors, an epitaxial Pb(Zr,Ti)O3 (PZT) thin film was deposited on an epitaxiallygrown conductive SrRuO3 (SRO) bottom electrode on a SrTiO3 (STO) (001) substrate. Polycrystalline SRO or Pt top ele...

متن کامل

Magnetic x-ray microdiffraction

Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space re...

متن کامل

Unraveling the Effects of Process Control Agents on Mechanical Alloying of Nanostructured Cu-Fe Alloy

Nanostructured Cu-20Fe alloy was synthesized by mechanical alloying process and the effects of process control agents (PCA) on the phase formation, crystallite refinement and morphology of powder particles were studied. The dissolution of Fe into Cu matrix and the morphology of powder particles were analyzed by X-ray diffraction (XRD) technique and scanning electron microscopy (SEM), respective...

متن کامل

Structural dynamics of PZT thin films at the nanoscale

When an electric field is applied to a ferroelectric the crystal lattice spacing changes as a result of the converse piezoelectric effect. Although the piezoelectric effect and polarization switching have been investigated for decades there has been no direct nanosecond-scale visualization of these phenomena in solid crystalline ferroelectrics. Synchrotron x-rays allow the polarization switchin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2018